Imputation of missing data with R (mi)

This is a short introdution on how to use the mi package to impute data where it is missing.

Setup

mp.plot(my.df, y.order = TRUE, x.order = TRUE, clustered = TRUE)
mi.info(my.df)
      names include order number.mis all.mis                type collinear
1  CIRI_WEC     Yes     1          1      No ordered-categorical        No
2  CIRI_WOS     Yes     2          1      No ordered-categorical        No
3  CIRI_WOP     Yes     3          1      No ordered-categorical        No
4  CIRI_POL     Yes     4          1      No ordered-categorical        No
5  CIRI_ASS     Yes     5          1      No ordered-categorical        No
6  CIRI_REL     Yes     6          1      No              binary        No
7  CIRI_SPE     Yes     7          1      No ordered-categorical        No
8  CIRI_PHY     Yes     8          1      No         nonnegative        No
9  BDLLS_OA     Yes     9        109      No         nonnegative        No
10 BDLLS_SH     Yes    10        109      No         nonnegative        No
11 BDLLS_UB     Yes    11        109      No         nonnegative        No
12 CIRI_WOR     Yes    12          1      No ordered-categorical        No
13 FH_IPOLI     Yes    NA          0      No         nonnegative        No
14 DPI_LIPC     Yes    13         20      No positive-continuous        No
15 DPI_FINT     Yes    14         19      No              binary        No
16 DPI_CEMO     Yes    15         19      No              binary        No
17 DPI_VSLO     Yes    16         27      No         nonnegative        No
18 DPI_FRAU     Yes    17         31      No              binary        No
19 DPI_MUNI     Yes    18         71      No ordered-categorical        No
20 WBGI_RLE     Yes    NA          0      No          continuous        No
21 FI_LEGPR     Yes    19         71      No positive-continuous        No
22 CIRI_INJ     Yes    20          2      No ordered-categorical        No
23 ICRG_QOG     Yes    21         54      No positive-continuous        No
24 WBGI_GEE     Yes    NA          0      No          continuous        No
25 WBGI_CCE     Yes    22          2      No          continuous        No
26 QS_IMPAR     Yes    23        140      No          continuous        No
27  EIU_FOG     Yes    24         30      No         nonnegative        No
28  FH_ECON     Yes    NA          0      No         nonnegative        No
29   FH_POL     Yes    NA          0      No         nonnegative        No
30   FH_LAW     Yes    NA          0      No         nonnegative        No
31 FH_REPRE     Yes    25          8      No         nonnegative        No
32       HR     Yes    NA          0      No          continuous        No
33    DEMOC     Yes    NA          0      No          continuous        No
34      ROL     Yes    NA          0      No          continuous        No
35       PM     Yes    NA          0      No          continuous        No
36 TRANSPAR     Yes    NA          0      No          continuous        No
37      QOG     Yes    NA          0      No          continuous        No
38     <NA>     Yes    NA          0      No          continuous        No
39     <NA>     Yes    NA          0      No          continuous        No
IMP <- mi(my.df, preprocess = TRUE)
Multiple Imputation with Diagnostics (mi) in R: Opening Windows into the Black Box

Imputation

Analysis

Validation

References

comments powered by Disqus


Back to the index

Blog roll

R-bloggers, Debian Weekly
Valid XHTML 1.0 Strict [Valid RSS] Valid CSS! Emacs Muse Last modified: oktober 17, 2019